Biotechnology

Category: Biotechnology

The concept of walking on water might sound supernatural, but in fact it is a quite natural phenomenon. Many small living creatures leverage water's surface tension to maneuver themselves around. One of the most complex maneuvers, jumping on water, is achieved by a species of semi-aquatic insects called water striders that not only skim along water's surface but also generate enough upward thrust with their legs to launch themselves airborne from it.


Some DNA sequences appear multiple times in the genome. Here, an RNA guide probe labels repetitive regions in the nucleus of a Xenopus laevis sperm.
University of California, Berkeley, researchers have discovered a much cheaper and easier way to target a hot new gene editing tool, CRISPR-Cas9, to cut or label DNA.


CRISPR/Cas9 is a gene-editing tool that can target a particular segment of DNA in living cells and replace it with a new genetic sequence.
Researchers at Harvard University and the University of California, San Diego, have developed a new user-friendly resource to accompany the powerful gene editing tool called CRISPR/Cas9, which has been widely adopted to make precise, targeted changes in DNA. This breakthrough has the potential to facilitate new discoveries in gene therapies and basic genetics research. The research was published in the July 13 issue of Nature Methods.

A simple, lower-cost new method for DNA profiling of human hairs developed by the University of Adelaide should improve opportunities to link criminals to serious crimes.


This is a graphic showing a process for producing large numbers of activated, customized T cells using magnetic nanoparticles and a column.
In recent years, researchers have hotly pursued immunotherapy, a promising form of treatment that relies on harnessing and training the body's own immune system to better fight cancer and infection. Now, results of a study led by Johns Hopkins investigators suggests that a device composed of a magnetic column paired with custom-made magnetic nanoparticles may hold a key to bringing immunotherapy into widespread and successful clinical use. A summary of the research, conducted in mouse and human cells, appears online July 14 in the journal ACS Nano.

A group led by Assistant Professor Dan Ohtan Wang from Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) in Japan successfully visualized RNA behavior and its response to drugs within the living tissue brain of live mice by labeling specific RNA molecules with fluorescent probes. Their study, published in Nucleic Acids Research, can potentially lead to faster, and more accurate screening processes for the discovery and development of new drugs.

The quality of waters can be assessed using of the organisms occurring therein. This approach often results in errors, because many species look alike. Therefore, new methods focus on DNA analyses instead. Biologists at the Ruhr-Universität Bochum (RUB) have optimised the process so that they are now able to identify many organisms at once in a quick and reliable manner using short DNA sequences. The results have been published in the PLOS ONE magazine.

In what may be a major leap forward in the quest for new treatments of the most common form of cardiovascular disease, scientists at Johns Hopkins report they have found a way to halt and reverse the progression of atherosclerosis in rodents by loading microscopic nanoparticles with a chemical that restores the animals' ability to properly handle cholesterol.

Scientists have developed a new tissue 'scaffold' technology that could one day enable the engineering of large organs.


This image shows two hands manipulating an IV for chemotherapy administration to a patient.
A new study published in IOP Publishing's journal 2D Materials has proposed using graphene as an alternative coating for catheters to improve the delivery of chemotherapy drugs.

UNSW Australia researchers have shown that changing just a single letter of the DNA of human red blood cells in the laboratory increases their production of oxygen-carrying haemoglobin - a world-first advance that could lead to a cure for sickle cell anaemia and other blood disorders.

Researchers have customized and refined a technique derived from the immune system of bacteria to develop the CRISPR-Cas9 genome engineering system, which enables targeted modifications to the genes of virtually any organism. The discovery and development of CRISPR-Cas9 technology, its wide range of potential applications in the agriculture/food industry and in modern medicine, and emerging regulatory issues are explored in a Review article published in OMICS: A Journal of Integrative Biology. The article is available free on the OMICS website until June 5, 2015.

Recent evidence demonstrating the feasibility of using novel CRISPR/Cas9 gene editing technology to make targeted changes in the DNA of human embryos is forcing researchers, clinicians, and ethicists to revisit the highly controversial issue of altering the inherited human genome. A provocative Editorial exploring the current technical limitations, safety concerns, and moral acceptability of therapeutic germline gene editing is published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the Human Gene Therapy website until May 29th.


This image shows a schematic diagram of the highly efficient CRISPR/Cas system, which leads to super efficient targeted insertion (knock-in) of a long donor insert into mouse genome.
Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without embryonic stem cells. In contrast to the ease of targeted gene deletion, the complementary application, called targeted gene cassette insertion or knock-in, in fertilized mouse eggs by CRISPR/Cas mediated genome editing still remains a tough challenge.

BiotechnologyApril 28, 2015 06:32 PM

Emory scientists have adapted an antiviral enzyme from bacteria called Cas9 into an instrument for inhibiting hepatitis C virus in human cells.

Yale researchers successfully corrected the most common mutation in the gene that causes cystic fibrosis, a lethal genetic disorder.

Researchers from the Institute of Biotechnology and Biomedicine at the Universitat Autònoma de Barcelona (IBB-UAB) and from the University of Warsaw have developed a new computational method called AGGRESCAN3D which will allow studying in 3D the structure of folded globular proteins and substantially improve the prediction of any propensity for forming toxic protein aggregates. With this new algorithm proteins can also be modelled to study the pathogenic effects of the aggregation or redesign them for therapeutic means.


Cacao seeds after harvest. A mixture of lipids called cocoa butter makes up about half of each seed.
The discovery of a gene involved in determining the melting point of cocoa butter -- a critical attribute of the substance widely used in foods and pharmaceuticals -- will likely lead to new and improved products, according to researchers in Penn State's College of Agricultural Sciences.

Access to high-quality medicine is a basic human right, but over four billion people live in countries where many medications are substandard or fake. Marya Lieberman of the Department of Chemistry and Biochemistry at the University of Notre Dame and Abigail Weaver a postdoctoral associate in the University's Department of Civil Engineering and Environmental and Earth Sciences took up the challenge of how people in developing countries could detect low quality antimalarial drugs without expensive equipment and without handling dangerous chemicals.


Michael Kessler, left, a professor in the Washington State University School of Mechanical and Materials Engineering, has developed polyurethane based on plant oils.
Washington State University researchers have developed a new way to use plant oils like olive and linseed oil to create polyurethane, a plastic material used in everything from foam insulation panels to tires, hoses and sealants.

Researchers from Brown University and the University of Rhode Island have demonstrated a promising new way to increase the effectiveness of radiation in killing cancer cells.


These are heart tissue cells grown on a matrix, stained with fluorescent markers.
Genetically engineered fibers of the protein spidroin, which is the construction material for spider webs, has proven to be a perfect substrate for cultivating heart tissue cells, MIPT researchers found. They discuss their findings in an article that has recently come out in the journal PLOS ONE.

An experimental single-stranded oligonucleotide-based drug, MGN1703, comprised only of natural DNA components, stimulates the human immune system to fight infections and attack cancer cells without causing the harmful side effects associated with similar compounds that also contain non-natural DNA components. The design and structural characteristics of MGN1703, which is in clinical testing to treat a variety of cancers, affect its potency and toxicity, as described in an article in Nucleic Acid Therapeutics


Scientists, led by the University of Michigan Medical School, coax stem cells to form mini lungs, 3-D structures that mimic human lungs and survived in the lab for 100 days.
Scientists have coaxed stem cells to grow the first three-dimensional mini lungs.

Almost all patients with a group of blood cancers called B-cell malignancies have two prominent "fingerprints" on the surface of leukemia and lymphoma cancers, called CD22 and CD19, Vallera explained. To develop the drug, Vallera and colleagues chose two antibody fragments that each selectively bind to CD19 and CD22. They used genetic engineering to attach these two antibodies to a potent toxin, the bacterial diphtheria toxin. When the antibody fragments bind to the two targets on the cancer cell, the entire drug enters the cell, and the toxin kills the cell.

BiotechnologyMarch 12, 2015 07:06 PM

A new "app" for finding and mapping chromosomal loci using multicolored versions of CRISPR/Cas9, one of the hottest tools in biomedical research today, has been developed by scientists at the University of Massachusetts Medical School. This labeling system, details of which were published in PNAS and first presented at the American Society for Cell Biology/International Federation for Cell Biology annual meeting in Philadelphia in December, could be a key to understanding the spatial and temporal regulation of gene expression by allowing researchers to measure the precise linear distance between two known points on different chromosomes or two locations on the same chromosome in live human cells.


NanoLive, an EPFL spin-off, has brought to the market a new MRI-like microscope that can "see " into living cells without any previous processing.
The major limitation of microscopy is light itself: if we want to see an object smaller than the wavelength of visible light, we cannot use conventional optics. When it comes to imaging cells, the problems compound, since cells often require chemical processing beforehand in order to make them suitable for viewing under a microscope. This processing essentially kills the cell in order to preserve it. An EPFL spin-off company, NanoLive, has developed the 3D Cell Explorer first-ever microscope that allows users to see inside living cells without any prior sample preparation, by using MRI-like technology and proprietary software that uses holographic algorithms.

For the first time, CRISPR-Cas9 gene-editing technology has been employed in a whole organism model to systematically target every gene in the genome. A team of scientists at the Broad Institute and MIT's David H. Koch Institute for Integrative Cancer Research have pioneered the use of this technology to "knock out," or turn off, all genes across the genome systematically in an animal model of cancer, revealing genes involved in tumor evolution and metastasis and paving the way for similar studies in other cell types and diseases. The work appears online March 5 in Cell.

When it comes to gene expression - the process by which our DNA provides the recipe used to direct the synthesis of proteins and other molecules that we need for development and survival - scientists have so far studied one single gene at a time. A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.


Inside the cell, calcium ions are released from a structure called the endoplasmic reticulum (ER). Forces applied to the bead cause ion channels in the ER to open mechanically (shown...
After using optical tweezers to squeeze a tiny bead attached to the outside of a human stem cell, researchers now know how mechanical forces can trigger a key signaling pathway in the cells.

Return to Biology News Net Homepage