Biology News Net
RSS 2.0 Feed
Biotechnology

Category: Biotechnology

Scientists at The University of Nottingham have demonstrated for the first time that it is possible to selectively sequence fragments of DNA in real time, greatly reducing the time needed to analyse biological samples.

Dr. Gang Zheng and a team of biomedical researchers have discovered a "smart" organic, biodegradable nanoparticle that uses heat and light in a controlled manner to potentially target and ablate tumours with greater precision.


A nanotech "tattoo " was developed by Tel Aviv University.
A new temporary "electronic tattoo" developed by Tel Aviv University that can measure the activity of muscle and nerve cells researchers is poised to revolutionize medicine, rehabilitation, and even business and marketing research.

Researchers at McMaster University have established a way to harness DNA as the engine of a microscopic "machine" they can turn on to detect trace amounts of substances that range from viruses and bacteria to cocaine and metals.

Ten years after its introduction, DNA origami, a fast and simple way to assemble DNA into potentially useful structures, is finally coming into its own.


Protein microarrays like this allow the investigation of thousands of proteins in a single experiment. Microarrays are only a few centimeters in size and host thousands of individual test spots...
Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.


Gene drive technologies may one day help alleviate the burden caused by diseases transmitted by mosquitoes and other animal vectors.
The BioScience Talks podcast features discussions of topical issues related to the biological sciences.


The GWAS results for genes that influence flowering dates. The known genes Hd1, Hd2, and Hd6 were located, together with two newly-identified genes that also affect flowering dates.
A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population. The paper was published on June 21, 2016 (Japan Standard Time) in the online edition of Nature Genetics.

The new stem cell-containing bio ink allows 3D printing of living tissue, known as bio-printing.


The system consists of two newly developed programs that automatically identify the 3-D positions of target areas based on the signals from the scintillators (shown as white dots), and determine...
"Clock genes" turn on and off, or "Express", in rhythmic patterns throughout the body to regulate physiological conditions and behaviour. When and how these genes express, especially in tissues outside the brain, is still poorly understood. Until now, scientists have lacked sufficient means to simultaneously monitor gene rhythms in specific tissues in freely moving subjects.

Lychnopholide, a substance isolated from a Brazilian plant, and formulated as part of "nanocapsules" cured more than half of a group of mice that had been infected experimentally with Chagas disease parasites. "Chagas disease affects millions of people, mainly in poor rural areas of 21 Latin American countries," said Marta de Lana, PhD. The research is published in online ahead of print June 20 in Antimicrobial Agents and Chemotherapy, a journal of the American Society for Microbiology.


DNA damage caused by very low-energy electrons and OH-radicals formed upon irradiation of water by ultrashort pulses of very intense laser light.
In a recent development, scientists at the Tata Institute of Fundamental Research report that damage to DNA can be induced by ultrashort pulses of high intensity laser light. Published in Scientific Reports, these findings have important implications in clinical conditions, especially in reducing collateral damage to tissues surrounding the real target of conventional radiotherapy.

As a new tool in CRISPR genome editing, Cpf1 has sparked an explosion of interest for its attributes that differ from Cas9: It requires only a single RNA that CRISPR RNA assembly is simpler; its staggered cleavage patterns may facilitate substituting existing DNA with desired sequences; and it recognizes thymidine-rich DNA sequences, which has been less explored than the guanosine-rich sequences recognized by Cas9. In sum, Cpf1 is expected to broaden the scope of CRISPR genome editing target sites with enhanced efficiency. Despite Cpf1's vast potential as a powerful genome editing tool, little has been demonstrated as to how, specifically, the new tool finds its targets. In a series of two papers published online on June 6 in Nature Biotechnology, researchers at the IBS Center for Genome Editing in South Korea showed Cpf1 as a highly specific programmable tool that is suitable for precision genome editing and reported generation of mutant mice using CRISPR-Cpf1.

Researchers from Bochum have engineered a hydrogen-producing enzyme in the test tube that works as efficiently as the original. The protein - a so-called hydrogenase from green algae - is made up of a protein scaffold and a cofactor. The latter is the reaction centre where the substances that react with each other dock. When the researchers added various chemically synthesised substances to the protein scaffold, the cofactor spontaneously assembled.


This is the herringbone structure of the outer layer (impact region) of the mantis shrimp dactyl club.
The next generation of airplanes, body armor and football helmets crawled out from under a rock--literally.

The use of next-generation gene sequencing in newborns in neonatal intensive care units (NICUs) may improve the diagnosis of rare diseases and deliver results more quickly to anxious families, according to new research in CMAJ (Canadian Medical Association Journal).


Close-up of the MinION handheld DNA sequencer.
A team from the University of Leicester has been awarded a prize for their proposal to crack down on wildlife crime using a portable DNA sequencing device, the MinION - developed by Oxford Nanopore Technologies - to read the 'barcode genes' of animals affected by illegal trafficking.

CRISPRainbow, a new technology using CRISPR/Cas9 developed by scientists at UMass Medical School, allows researchers to tag and track up to seven different genomic locations in live cells. This labeling system, details of which were published in Nature Biotechnology, will be an invaluable tool for studying the structure of the genome in real time.


All the movies, images, emails and other digital data from more than 600 basic smartphones (10,000 gigabytes) can be stored in this faint pink smear of DNA.
Technology companies routinely build sprawling data centers to store all the baby pictures, financial transactions, funny cat videos and email messages its users hoard.

Researchers have developed a new and highly efficient method for gene transfer. The technique, which involves culturing and transfecting cells with genetic material on an array of carbon nanotubes, appears to overcome the limitations of other gene editing technologies.


The University of Georgia and Ben-Gurion University research team site-specifically inserted a small molecule named coralyne into the DNA and were able to create a single-molecule diode
Researchers at the University of Georgia and at Ben-Gurion University in Israel have demonstrated for the first time that nanoscale electronic components can be made from single DNA molecules. Their study, published in the journal Nature Chemistry, represents a promising advance in the search for a replacement for the silicon chip.


Professor Saso Ivanovski.
The discomfort and stigma of loose or missing teeth could be a thing of the past as Griffith University researchers pioneer the use of 3D bioprinting to replace missing teeth and bone.


A new study shows that a hollowed-out version of cowpea mosaic virus could be useful in human therapies.
Viruses aren't always bad. In fact, scientists can harness the capabilities of some viruses for good--modifying the viruses to carry drug molecules, for example.

Researchers have presented one of the first computerised tomography (CT) scans of a mummified individual from southern Africa, and also completed the first successful aDNA (ancient DNA) extraction from such remains. The mummy is estimated to have been about 300 years old.


This graphic depicts a new inhibitor, 6S, locking up an enzyme (red) to block the production of hydrogen sulfide (yellow and white).
Research teams separated by 14 hours and 9,000 miles have collaborated to advance prospective treatment for the world's second-leading cause of death.


Haoquan Wu, Ph.D., left, and Ying Dang, Ph.D., right, have improved the gene editing technology CRISPR and enhanced its ability to target and knockout genes.
Scientists have developed a process that improves the efficiency of CRISPR, an up-and-coming technology used to edit DNA.


Dr. David Gangitano is an associate professor in the Department of Forensic Science at Sam Houston State University.
Sam Houston State University is advancing the field of forensic botany with the publication of two recent studies that use marijuana DNA to link drug supplies and pollen DNA to aid in forensic investigations.

A novel HIV-based lentiviral vector can introduce a gene to pancreatic tumor cells that makes them more sensitive to the chemotherapeutic drug gemcitabine, without integrating into cellular DNA. This integrase-defective lentiviral delivery system greatly reduces the risk of insertional mutagenesis and replication-competent lentivirus production, as describe in a new study published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free to read on the Human Gene Therapy website until March 31, 2016.


Japanese bioengineers have tweaked Escherichia coli genes so that they pump out thebaine, a morphine precursor that can be modified to make painkillers.
A common gut microbe could soon be offering us pain relief. Japanese bioengineers have tweaked Escherichia coli genes so that they pump out thebaine, a morphine precursor that can be modified to make painkillers. The genetically modified E. coli produces 300 times more thebaine with minimal risk of unregulated use compared to a recently developed method involving yeast.

Researchers from the General Physics Institute of the Russian Academy of Sciences (GPI RAS) and Moscow Institute of Physics and Technology (MIPT) have developed a new biosensor test system based on magnetic nanoparticles. It is designed to provide highly accurate measurements of the concentration of protein molecules (e.g. markers, which indicate the onset or development of a disease) in various samples, including opaque solutions or strongly coloured liquids.

Return to Biology News Net Homepage