Biotechnology


This image shows dramatically enhanced muscle tissue in a high performing mouse, which has greater numbers of mitochondria (brown), the energy factories of cells.
An international team of scientists has created super-strong, high-endurance mice and worms by suppressing a natural muscle-growth inhibitor, suggesting treatments for age-related or genetics-related muscle degeneration are within reach.

Molecular & Cell Biology

Researchers at the Swedish medical university Karolinska Institutet have developed a new method for counting molecules. Quantifying the amounts of different kinds of RNA and DNA molecules is a fundamental task in molecular biology as these molecules store and transfer the genetic information in cells. Thus, improved measurement techniques are crucial for understanding both normal and cancer cells.

Environment

A new model developed by scientists of the European Commission's Joint Research Centre (JRC) allows the potential presence of bluefin tuna to be tracked through daily updated maps, helping to protect endangered stocks and fight illegal fishing. The model, based on satellite remote sensing data, provides for the first time an overall view of the preferred bluefin tuna habitats in the Mediterranean Sea, as well as their changes over time. Satellite-based habitat mapping can help identify more precisely areas to be inspected or to be closed for fisheries and it can also help refine estimates of fish stocks, thus contributing to a more effective fisheries management. European Commissioner for Research and Innovation, Máire Geoghegan-Quinn, said: "This model will help to ensure sustainable management of bluefin tuna, actively contributing to two of the most pressing challenges for the future: food security and protection of the environment. Another good example of how science and research provide support to European Union policies."

Molecular & Cell Biology

Researchers have found long-sought genes in the sensory hair cells of the inner ear that, when mutated, prevent sound waves from being converted to electric signals – a fundamental first step in hearing. The team, co-led by Jeffrey Holt, PhD, in the department of otolaryngology at Children’s Hospital Boston, and Andrew Griffith, MD, PhD, of the NIH’s National Institute on Deafness and other Communication Disorders (NIDCD), then restored these electrical signals in the sensory cells of deaf mice by introducing normal genes.




Search Bio News Net


Free Biology Newsletter